CN| ENG
联系我们 永乐国际注册地址

深圳长石新能源科技有限公司:科普 石墨烯的性能及应用

时间: 2023-11-15 03:10:41 |   作者: 产品/永乐国际注册地址

石墨烯(Graphene)是一种以sp²杂化连接的碳原子紧密堆积成单层二维蜂窝状晶格结构的新材料

产品特性

  石墨烯(Graphene)是一种以sp²杂化连接的碳原子紧密堆积成单层二维蜂窝状晶格结构的新材料。石墨烯具备优秀能力的光学、电学、力学特性,在材料学、微纳加工、能源、生物医学和药物传递等方面具备极其重大的应用前景,被认为是一种未来革命性的材料。英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,用微机械剥离法成功从石墨中分离出石墨烯。因此,共同获得2010年诺贝尔物理学奖。石墨烯常见的粉体生产的方法为机械剥离法、氧化还原法、SiC外延生长法、薄膜生产方法及化学气相沉积法(CVD)。

  石墨烯内部碳原子的排列方式与石墨单原子层一样以sp2杂化轨道成键,其特点:碳原子有4个价电子,其中3个电子生成sp2键,即每个碳原子都贡献一个位于pz轨道上的未成键电子,近邻原子的pz轨道与平面成垂直方向可形成п键,新形成的п键呈半填满状态。研究证实,石墨烯中碳原子的配位数为3,每两个相邻碳原子间的键长为1.42×10-10米,键与键之间的夹角为120°。除了σ键与其他碳原子链接成六角环的蜂窝式层状结构外,每个碳原子的垂直于层平面的pz轨道能形成贯穿全层的多原子的大п键(与苯环类似),因而具有优良的导电和光学性能。

  石墨烯是已知强度最高的材料之一,同时还具有非常好的韧性,可以弯曲,石墨烯的理论杨氏模量达1.0TPa,固有的拉伸强度为130GPa。利用氢等离子改性的还原石墨烯有非常好的强度,平均模量可达0.25TPa。如石墨烯薄片组成的石墨纸有很多的孔,石墨纸显得很脆,经氧化得到功能化石墨烯,再由功能化石墨烯做成石墨纸则会异常坚固强韧。

  石墨烯在室温下的载流子迁移率约为15000cm2/(V·s),这一数值超过了硅材料的10倍,是已知载流子迁移率最高的物质锑化铟(InSb)的两倍以上。在某些特定条件下(如低温),石墨烯的载流子迁移率甚至可高达250000cm2/(V·s)。与很多材料不一样,石墨烯的电子迁移率受气温变化的影响较小,50~500K之间的任何温度下,单层石墨烯的电子迁移率都在15000cm2/(V·s)左右。

  石墨烯有非常好的热传导性能。纯的无缺陷的单层石墨烯的导热系数高达5300W/mK,是为止导热系数最高的碳材料,高于单壁碳纳米管(3500W/mK)和多壁碳纳米管(3000W/mK)。作为载体时,导热系数也可达600W/mK。此外,石墨烯的弹道热导率可以使单位圆周和长度的碳纳米管的弹道热导率的下限下移。

  石墨烯有非常良好的光学特性,在较宽波长范围内吸收率约为2.3%,看上去几乎是透明的。在几层石墨烯厚度范围内,厚度每增加一层,吸收率增加2.3%。大面积的石墨烯薄膜同样具备优秀能力的光学特性,其光学特性随石墨烯厚度的改变而发生明显的变化。这是单层石墨烯所具有的不寻常低能电子结构。室温下对双栅极双层石墨烯场效应晶体管施加电压,石墨烯的带隙可在0~0.25eV间调整。施加磁场,石墨烯纳米带的光学响应可调谐至太赫兹范围。当入射光的强度超过某一临界值时,石墨烯对其的吸收会达到饱和。这些特性可以使得石墨烯可拿来做被动锁模激光器。这种独特的吸收可能成为饱和时输入光强超过一个阈值,这称为饱和影响,石墨烯可饱和容易下可见强有力的激励近红外地区,由于环球光学吸收和零带隙。由于这种特殊性质,石墨烯有广泛应用在超快光子学。石墨烯/氧化石墨烯层的光学响应可以调谐电。更密集的激光照明下,石墨烯可能拥有一个非线性相移的光学非线、溶解性在非极性溶剂中表现出良好的溶解性,具有超疏水性和超亲油性。7、熔点科学家在2015年的研究中表示约4125K,有其他研究表明熔点可能在5000K左右。

  石墨烯的化学性质与石墨类似,石墨烯可以吸附并脱附各种原子和分子。当这些原子或分子作为给体或受体时能改变石墨烯载流子的浓度,而石墨烯本身却能保持很好的导电性。但当吸附其他物质时,如H+和OH‐时,会产生一些衍生物,使石墨烯的导电性变差,但并没有产生新的化合物。因此,可通过石墨来推测石墨烯的性质。例如石墨烷的生成就是在二维石墨烯的基础上,每个碳原子多加上一个氢原子,从而使石墨烯中sp2碳原子变成sp3杂化。可以在实验室中通过化学改性的石墨制备的石墨烯的可溶性片段。

  石墨烯对物理学基础研究有着特殊意义,它使得一些此前只能在理论上进行论证的量子效应能够最终靠实验经行验证。在二维的石墨烯中,电子的质量仿佛是不存在的,这种性质使石墨烯成为了一种罕见的可用于研究相对论量子力学的凝聚态物质——因为无质量的粒子必须以光速运动,从而必须用相对论量子力学来描述,这为理论物理学家们提供了一个崭新的研究方向:一些原来需要在巨型粒子加速器中进行的试验,可以在小型实验室内用石墨烯进行。

  零能隙的半导体主要是单层石墨烯,这种电子结构会极度影响到气体分子在其表面上的作用。单层石墨烯较体相石墨表面反应活性增强的功能是由石墨烯的氢化反应和氧化反应结果为出来的,说明石墨烯的电子结构可以调变其表面的活性。另外,石墨烯的电子结构能够最终靠气体分子吸附的诱导而发生相应的变化,其不但对载流子的浓度进行改变,同时能掺杂不同的石墨烯。

  石墨烯能做成化学传感器,这样的一个过程主要是通过石墨烯的表面吸附性能来完成的,根据部分学者的研究可知,石墨烯化学探测器的灵敏度可以与单分子检测的极限相比拟。石墨烯独特的二维结构使它对周围的环境非常敏感。石墨烯是电化学生物传感器的理想材料,石墨烯制成的传感器在医学上检测多巴胺、葡萄糖等拥有非常良好的灵敏性。

  石墨烯可拿来制作晶体管,由于石墨烯结构的高度稳定性,这种晶体管在接近单个原子的尺度上依然能稳定地工作。相比之下,目前以硅为材料的晶体管在10纳米左右的尺度上就会失去稳定性;石墨烯中电子对外场的反应速度超快这一特点,又使得由它制成的晶体管能够达到极高的工作频率。例如IBM公司在2010年2月就已宣布将石墨烯晶体管的工作频率提高到了100GHz,超过同等尺度的硅晶体管。

  消费电子展上可弯曲屏幕备受瞩目,成为未来移动电子设备显示屏的发展的新趋势。柔性显示未来市场广阔,作为基础材料的石墨烯前景也被看好。韩国研究人员首次制造出了由多层石墨烯和玻璃纤维聚酯片基底组成的柔性透明显示屏。韩国三星公司和成均馆大学的研究人员在一个63厘米宽的柔性透明玻璃纤维聚酯板上,制造出了一块电视机大小的纯石墨烯。他们表示,这是迄今为止“块头”最大的石墨烯块。随后,他们用该石墨烯块制造出了一块柔性触摸屏。研究人员表示,从理论上来讲,人类能卷起智能手机,然后像铅笔一样将其别在耳后。

  新能源电池也是石墨烯最早商用的一大重要领域。美国麻省理工学院已成功研制出表面附有石墨烯纳米涂层的柔性光伏电池板,可极大降造透明可变形太阳能电池的成本,这种电池有可能是在夜视镜、相机等小型数码设备中应用。另外,石墨烯超级电池的成功研发,也解决了新能源汽车电池的容量不够以及充电时间长的问题,极大加速了新能源电池产业的发展。这一系列的研究成果为石墨烯在新能源电池行业的应用铺就了道路。

  基于石墨烯的复合材料是石墨烯应用领域中的重要研究方向,其在能量储存、液晶器件、电子器件、生物材料、传感材料和催化剂载体等领域展现出了优良性能,具有广阔的应用前景。目前石墨烯复合材料的研究大多分布在在石墨烯聚合物复合材料和石墨烯基无机纳米复合材料上,而随着对石墨烯研究的深入,石墨烯增强体在块体金属基复合材料中的应用也慢慢变得受到人们的重视。石墨烯制成的多功能聚合物复合材料、高强度多孔陶瓷材料,增强了复合材料的许多特殊性能。

  石墨烯被用来加速人类骨髓间充质干细胞的成骨分化,同时也被用来制造碳化硅上外延石墨烯的生物传感器。同时石墨烯可当作一个神经接口电极,而不会改变或破坏性能,如信号强度或疤痕组织的形成。由于具有柔韧性、生物相容性和导电性等特性,石墨烯电极在体内比钨或硅电极稳定。石墨烯氧化物对于抑制大肠杆菌的生长十分有效,而且不会伤害到人体细胞。

  石墨烯独特的结构赋予其重要的物理特性,包括高效的电热传导和不寻常的强度。自罗马人以来,混凝土就一直被用作建筑材料。科学研究表明,“超级材料”石墨烯让这种最古老的建筑材料更坚固、更防水、更环保。为制造出这种混凝土,英国埃克塞特大学的一个团队设计了一种技术,将石墨烯片悬浮在水中,然后将水与传统混凝土成分混合。据报道该工艺价格低,并且符合现代大规模生产规格要求。经测试,加入石墨烯的混凝土与普通混凝土相比,抗住压力的强度提高了146%,抗弯拉强度提高了79.5%,渗水率降低了近400%。这种新型混凝土可以直接在建筑施工工地上使用,使坚固耐用的建筑可使用较少的混凝土和减少温室气体排放。使用石墨烯意味着能够将用来制造混凝土的材料的数量减少一半。

  石墨烯改性防腐涂料,由于纳米级的石墨烯的片层结构层层叠加、交错排列,在涂层中可形成“迷宫式”屏蔽结构,形成一道屏蔽阻隔。便能够有效抑制腐蚀介质的浸润、渗透和扩散,提高涂层的物理阻隔性。同时,还可延长腐蚀介质的渗透扩散路径;从而提供涂层的抗渗透性和常规使用的寿命。目前的传统防腐涂料中,绝大多数底漆以锌粉作为添加剂。然而,随着腐蚀时间的加长,涂层中的锌粉由于被氧化致使导电性下降,便有可能阻断电子传输路径,失去阴极保护的情况下,让涂料失去防止腐烂的性能。将石墨烯添加进锌粉底漆中,石墨烯的导电性能极佳,便会与锌粉形成良好的导电网络,即让石墨烯来实现导电搭桥,以此来实现低锌条件下仍然具有防腐功能。


上一篇: 电子职业新闻 - OFweek电子工程网
下一篇: 【48812】日本“月亮女神”在月球南极没找到冰
相关产品
  • 【48812】怎么验明翡翠正身 有丝少斑透亮
    More
  • 【48812】翡翠保藏要澄清三个基本概念
    More
  • 翡翠染色造假的方法主要有这四种方法不同鉴别的重点也不同!
    More
  • 二手房的税费怎么计算
    More
  • 【48812】年假3倍薪酬怎样算 单位解雇员工补偿规范怎样
    More
  • 金刚石重大发现新型材料可将充电速度提升5倍!超七成概念股市盈率不足30倍
    More
  • 前10名导热性能最强的材料
    More
  • 5000mAh+骁龙870+金刚石散热跌至1569元36分钟充满电量
    More